Империя мудрых женщин

Внутренняя энергия идеального газа максимальна в состоянии. Термодинамика. Тест. Внутренняя энергия

Н аука о тепловых явлениях называется термодинамика. Термодинамика исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем.

При изучении основ термодинамики необходимо помнить следующие определения. Физическая система, состоящая из большого числа частиц - атомов или молекул, которые совершают тепловое движение и, взаимодействуя между собой, обмениваются энергиями, называется термодинамической системой .

Состояние термодинамической системы определяется макроскопическими параметрами , например удельным объемом, давлением, температурой.

Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия. Это означает, что в таких системах прекратились все наблюдаемые макроскопические процессы. Важным свойством термодинамически равновесной системы является выравнивание температуры всех ее частей.

Термодинамика рассматривает только равновесные состояния , т.е. состояния, в которых параметры термодинамической системы не меняются со временем.

Если термодинамическая система была подвержена внешнему воздействию, то в конечном итоге она перейдет в другое равновесное состояние. Такой переход называется термодинамическим процессом.

Термодинамическим процессом называется переход системы из начального состояния в конечное через последовательность промежуточных состояний.

Процессы бывают обратимыми и необратимыми.

Обратимым называется такой процесс, при котором возможен обратный переход системы из конечного состояния в начальное через те же промежуточные состояния, чтобы в окружающих телах не произошло никаких изменений. Обратимый процесс является физической абстракцией. Примером процесса, приближающегося к обратимому, является колебание тяжелого маятника на длинном подвесе. В этом случае кинетическая энергия практически полностью превращается в потенциальную, и наоборот. Колебания происходят долго без заметного уменьшения амплитуды ввиду малости сопротивления среды и сил трения.

Любой процесс, сопровождаемый трением или теплопередачей от нагретого тела к холодному, является необратимым . Примером необратимого процесса является расширение газа, даже идеального, в пустоту. Расширяясь, газ не преодолевает сопротивления среды, не совершает работы, но, для того чтобы вновь собрать все молекулы газа в прежний объем, т. е. привести газ в началь­ное состояние, необходимо затратить работу. Таким образом, все реальные процессы являются необратимыми.

Изменение внутренней энергии газа в процессе теплообмена и совершаемой работы.

Одним из важнейших понятий термодинамики является внутренняя энергия тела. Все макроскопические тела обладают энергией, заключенной внутри самих тел. С точки зрения молекулярно-кинетической теории внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом .

Внутренняя энергия – это сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

В частности, внутренняя энергия идеального газа равна сумме кинетических энергий всех частиц газа, находящихся в непрерывном и беспорядочном тепловом движении. Внутренняя энергия идеального газа зависит только от его температуры и не зависит от объема (закон Джоуля).

Молекулярно-кинетическая теория приводит к следующему выражению для внутренней энергии одного моля идеального одноатомного газа (гелий, неон и др.), молекулы которого совершают только поступательное движение:

Поскольку потенциальная энергия взаимодействия молекул зависит от расстояния между ними, в общем случае внутренняя энергия

U тела зависит наряду с температурой T также и от объема V : U = U (T , V ).

Таким образом, внутренняя энергия системы зависит только от её состояния и является однозначной функцией состояния, внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела . Она не зависит от того, каким путем было реализовано данное состояние.

Внутреннюю энергию тела можно изменить разными способами :

  1. Совершение механической работы.
  2. Теплообмен.


Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную).

Например, газ подвергается сжатию в цилиндре под поршнем площадью S. Поршень, сжимая газ, движется с некоторой скоростью v. Молекулы газа, беспорядочно двигаясь, ударяются о поршень. После упругого удара молекулы о поршень скорость молекулы возрастает, а значит возрастает и её кинетическая энергия, что приводит к увеличению внутренней энергии газа.

При сжатии газа его внутренняя энергия увеличивается за счет совершения поршнем механической работы. При расширении газа его внутренняя энергия уменьшается, превращаясь в механическую энергию поршня.

При сжатии газа внешние силы совершают над газом некоторую положительную работу A".

В то же время силы давления, действующие со стороны газа на поршень, совершают работу

A = –A".

Если объем газа изменился на малую величину ΔV , то газ совершает работу pS Δx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение.

При расширении работа, совершаемая газом, положительна, при сжатии – отрицательна .

В общем случае при переходе из некоторого начального состояния (1) в конечное состояние (2) работа газа выражается формулой:

или в пределе при ΔV i → 0:

Работа численно равна площади под графиком процесса на диаграмме (p , V ):

Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. На рис. 2 изображены три различных процесса, переводящих газ из состояния (1) в состояние (2). Во всех трех случаях газ совершает различную работу.

Рисунок 2.
Три различных пути перехода из состояния (1) в состояние (2).
Во всех трех случаях газ совершает разную работу, равную площади под графиком процесса.

Процессы, изображенные на рис. 2, можно провести и в обратном направлении; тогда работа A просто изменит знак на противоположный.

Процессы которые можно проводить в обоих направлениях, называются обратимыми .

В отличие от газа, жидкости и твердые тела мало изменяют свой объем, так что во многих случаях работой, совершаемой при расширении или сжатии, можно пренебречь. Однако, внутренняя энергия жидких и твердых тел также может изменяться в результате совершения работы. При механической обработке деталей (например, при сверлении) они нагреваются. Это означает, что изменяется их внутренняя энергия.

Внутренняя энергия тела может изменяться не только в результате совершаемой работы, но и вследствие теплообмена .

При тепловом контакте тел внутренняя энергия одного из них может увеличиваться, а внутренняя энергия другого – уменьшаться. В этом случае говорят о тепловом потоке от одного тела к другому. Передача энергии от одного тела другому в форме тепла может происходить только при наличии разности температур между ними.

Приведем в соприкосновение два тела с раз­ными температурами. Пусть температура первого тела выше, чем второго. В результате обмена энергиями температура пер­вого тела уменьшается, а второго - увеличивается. В рассмат­риваемом примере кинетическая энергия хаотического движе­ния молекул первого тела переходит в кинетическую энергию хаотического движения молекул второго тела.

Тепловой поток всегда направлен от горячего тела к холодному .

Процесс передачи внутренней энергии без совершения меха­нической работы называется теплообменом.

Мерой энергии, полу­чаемой или отдаваемой телом в процессе теплообмена, служит физическая величина, называемая количеством теплоты .

Количеством теплоты Q , полученной телом, называют изменение внутренней энергии тела в результате теплообмена.

Количество теплоты Q является энергетической величиной. В СИ количество теплоты измеряется в единицах механической работы – джоулях (Дж).

До введения СИ количество теплоты выражали в калориях.

Калория - это количество теплоты, необходимое для нагревания 1 г дистиллиро­ванной воды на 1°С, от 19,5°С до 20,5°С.

Единица, в 1000 раз большая калории, называется килокалорией (1 ккал = 1000 кал). Соотношение между единицами: 1 кал =4,19 Дж.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются.

Чтобы нагреть тело массой m от температуры t 1 до температуры t 2 ему необходимо сообщить количество теплоты

Q = cm (t 2 t 1 )

Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c.

c = Q / (mΔT).

Во многих случаях удобно использовать молярную теплоемкость C :

C = M · c, где M – молярная масса вещества.

При передаче тепла от одного тела к другому всегда выполняется уравнение теплового баланса , по которому количество теплоты Q 1 , отданное первым телом, равно количеству теплоты Q 2 , полученному вторым телом.

Q 1 = Q 2

Теплота и работа являются не видом энергии, а формой ее передачи, они существуют лишь в процессе передачи энергии.

В реальных условиях оба способа передачи энергии системе в форме работы и форме теплоты обычно сопутствуют друг другу.

Первое начало термодинамики.

На рисунке изображены энергетические потоки между термодинамической системой и окружающими телами. в результате теплообмена и совершаемой работы:

Величина Q > 0, если тепловой поток нправлен в сторону термодинамической системы. Величина A > 0, если система совершает положительную работу над окружающими телами.

Если система обменивается теплом с окружающими телами и совершает работу (положительную или отрицательную), то изменяется состояние системы, то есть изменяются ее макроскопические параметры (температура, давление, объем).

Процессы теплообмена и совершения работы сопровождаются изменением ΔU внутренней энергии системы.

Первый закон термодинамики является обобщением закона сохранения и превращения энергии для термодинамической системы. Он формулируется следующим образом:

Изменение ΔU внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты Q , переданной системе, и работой A , совершенной системой над внешними телами.

ΔU = Q – A.

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами.

Первый закон термодинамики является обобщением опытных фактов. Согласно этому закону, энергия не может быть создана или уничтожена; она передается от одной системы к другой и превращается из одной формы в другую. Если между телами, составляющими замкнутую систему, действуют силы трения, то часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую. Этот экспериментально установленный факт выражает фундаментальный закон природы –

№ 8, стр. 163

Определите Q - теплоту, необходимую для плавления свинца массой m=10 кг, находящегос при температуре плавления. Удельная теплота плавления свинца λ=25 кДж/кг. (ответ Q=250 кДж)

6.2. Первый закон термодинамики

6.2.1. Внутренняя энергия идеального газа

Внутренняя энергия любого вещества - это энергия теплового движения его молекул и энергия их взаимодействия между собой. Модель идеального газа предполагает отсутствие взаимодействия между его молекулами, поэтому внутренней энергией идеального газа принято считать только энергию теплового движения молекул. Внутренняя энергия газа представляет собой сумму кинетических энергий его молекул и определяется формулой

U = N 〈 E k 〉 ,

где N - число молекул (атомов), N = νN A ; ν - количество вещества; N A - постоянная (число) Авогадро, N A = 6,02 ⋅ 10 23 моль –1 ; 〈 E k 〉 - средняя кинетическая энергия одной молекулы, 〈 E k 〉 = i 2 k T ; i - число степеней свободы; k - постоянная Больцмана, k = 1,38 ⋅ 10 −23 Дж/К; T - абсолютная температура.

Число степеней свободы зависит от количества атомов в молекуле газа и имеет следующие значения:

  • для одноатомного -

i = 3;

  • для двухатомного -

i = 5;

  • для трех- и многоатомного -

i = 6.

В Международной системе единиц внутренняя энергия вещества (газа) измеряется в джоулях (1 Дж).

Внутренняя энергия идеального газа определяется формулой

U = i 2 ν R T ,

где i - число степеней свободы; ν - количество вещества (газа); R - универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T - абсолютная (термодинамическая) температура вещества.

Внутренняя энергия для одно-, двух-, трех- и многоатомных газов определяется следующими формулами:

  • для одноатомного -

U = 3 2 ν R T ;

  • для двухатомного -

U = 5 2 ν R T ;

  • для трех- и многоатомного -

U = 3νRT .

Изменение внутренней энергии газа определяется разностью

ΔU = U 2 − U 1 ,

где U 1 - внутренняя энергия начального состояния газа; U 2 - внутренняя энергия конечного состояния газа.

Изменение внутренней энергии газа связано с изменением кинетической энергии движения его молекул. Изменение кинетической энергии движения молекул вещества, в свою очередь, связано с изменением температуры. Следовательно, изменение внутренней энергии газа определяется изменением его температуры.

Изменение внутренней энергии идеального газа рассчитывается по формуле

Δ U = i 2 ν R (T 2 − T 1) = i 2 ν R Δ T ,

где i - число степеней свободы; ν - количество вещества; R - универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); T 2 - абсолютная температура конечного состояния газа; T 1 - абсолютная температура начального состояния идеального газа; ∆T = T 2 − T 1 .

Изменение внутренней энергии для одно-, двух-, трех- и многоатомных газов определяется следующими формулами:

  • для одноатомного -

Δ U = 3 2 ν R Δ T ;

  • для двухатомного -

Δ U = 5 2 ν R Δ T ;

  • для трех- и многоатомного -

∆U = 3νR ∆T .

Изменение внутренней энергии газа ΔU при различных процессах также различно и показано в таблице (для одно-, двух-, трех- и многоатомных газов):

Внутренняя энергия газа не изменяется (U = const):

  • при изотермическом процессе, так как ΔT = 0;
  • при циклическом процессе, так как в конце процесса газ возвращается в состояние с исходными параметрами; циклическим (круговым, замкнутым) процессом, или циклом, называется процесс, при котором газ, пройдя ряд состояний, возвращается в исходное.

Пример 1. В ходе некоторого процесса давление и объем постоянной массы идеального одноатомного газа изменяются таким образом, что pV 2 = const, где p - давление в паскалях; V - объем в кубических метрах. Во сколько раз уменьшается внутренняя энергия газа при увеличении его объема в 3 раза?

Решение . Внутренняя энергия идеального одноатомного газа определяется следующей формулой:

  • для начального состояния газа -

U 1 = 3 2 ν R T 1 ,

где ν - количество вещества (газа); R - универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К); T 1 - температура газа в начальном состоянии;

  • для конечного состояния газа -

U 2 = 3 2 ν R T 2 ,

где T 2 - температура газа в конечном состоянии.

Искомым является отношение

U 1 U 2 = 3 ν R T 1 2 ⋅ 2 3 ν R T 2 = T 1 T 2 .

Найдем отношение температур.

Для этого из уравнения Менделеева - Клапейрона

pV = νRT

выразим давление

p = ν R T V

и подставим полученное выражение в заданный в условии задачи закон:

ν R T V ⋅ V 2 = ν R T V = const , или TV = const.

Заданное в условии соотношение между давлением и объемом эквивалентно полученному соотношению между температурой и объемом.

Для двух состояний газа справедливо тождество

T 1 V 1 = T 2 V 2 ,

где V 1 - объем газа в начальном состоянии; V 2 - объем газа в конечном состоянии.

Отсюда следует, что отношение температур определяется выражением

T 1 T 2 = V 2 V 1 ,

а искомое отношение внутренних энергий газа равно

U 1 U 2 = V 2 V 1 = 3 .

Пример 2. Термоизолированный сосуд, содержащий некоторое количество водорода, движется со скоростью 250 м/с. Как изменится температура газа, если сосуд внезапно остановить? Молярная масса водорода равна 2,0 г/моль. Теплоемкостью сосуда пренебречь.

Решение . Энергия газа в сосуде определяется суммой:

  • для движущегося сосуда -

E 1 = U 1 + W k 1 ,

где U 1 - внутренняя энергия водорода (двухатомного газа) в движущемся сосуде (энергия теплового движения молекул водорода), U 1 = 5νRT 1 /2; ν - количество водорода, ν = m /M ; m - масса водорода; M - молярная масса водорода, M = 2,0 г/моль; T 1 - начальная температура водорода; R - универсальная газовая постоянная, R = = 8,31 Дж/(моль ⋅ К); W k 1 - кинетическая энергия водорода, движущегося вместе с сосудом, W k 1 = mv 2 /2; v - скорость сосуда, v = 250 м/с;

  • для остановившегося сосуда -

E 2 = U 2 + W k 2 ,

где U 2 - внутренняя энергия водорода (двухатомного газа) в остановившемся сосуде, U 2 = 5νRT 2 /2; T 2 - конечная температура водорода; W k 2 - кинетическая энергия водорода, остановившегося вместе с сосудом, W k 2 = 0.

По условию задачи обмена энергией между газом в сосуде и окружающей средой не происходит, так как сосуд является термоизолированным; поэтому энергия газа сохраняется

E 1 = E 2 ,

или, в явном виде, -

U 1 + W k 1 = U 2 + W k 2 .

Подстановка в полученное равенство выражений для внутренней и кинетической энергий газа в сосуде дает

5 m R T 1 2 M + m v 2 2 = 5 m R T 2 2 M .

Искомая разность температур определяется формулой

Δ T = v 2 M 5 R .

Вычислим:

Δ T = (250) 2 ⋅ 2,0 ⋅ 10 − 3 5 ⋅ 8,31 = 3,0 К.

При внезапной остановке сосуда, движущегося с указанной скоростью, температура содержащегося в нем водорода повышается на 3,0 К.

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U 2 - U 1 . Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

1. При совершении механической работы .

а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела.

б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии.

в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.

2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W . Мерой изменения механической энергии является работа сил, приложенных к системе:

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

§ работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);

§ количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

§ Теплоемкость , количество теплоты, затрачиваемое для изменения температуры на 1°С. Согласно более строгому определению, теплоемкость - термодинамическая величина, определяемая выражением:

§ где ΔQ - количество теплоты, сообщенное системе и вызвавшее изменение ее температуры на Delta;T. Отношение конечных разностей ΔQ /ΔТ называется средней теплоемкостю , отношение бесконечно малых величин dQ/dT - истинной теплоемкостю . Поскольку dQ не является полным дифференциалом функции состояния, то итеплоемкость зависит от пути перехода между двумя состояниями системы. Различают теплоемкость системы в целом (Дж/К), удельную теплоемкость [Дж/(г·К)], молярную теплоемкость [Дж/(моль·К)]. Во всех ниже приведенных формулах использованы молярные величины теплоемкости .

Вопрос 32:

Внутреннюю энергию можно изменить двумя способами.

Количеством теплоты (Q) называется изменение внутренней энергии тела, происходящее в результате теплопередачи.

Количество теплоты измеряется в системе СИ в джоулях.
[Q] = 1Дж.

Удельная теплоемкость вещества показывает, какое количество теплоты необходимо, чтобы изменить температуру единицы массы данного вещества на 1°С.
Единица удельной теплоемкости в системе СИ:
[c] = 1Дж/кг·градусС.

Вопрос 33:

33 Первое начало термодинамики количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами. dQ=dU+dA,где dQ-элементарное кол-во теплоты,dA-элементарная работа,dU-приращение внутренней энергии. Применение первого начала термодинамики к изопроцессам
Среди равновесных процессов, происходящих с термодинамическими системами, выде­ляются изопроцессы , при которых один из основных параметров состояния сохраняется постоянным.
Изохорный процесс (V =const). Диаграмма этого процесса(изохора) в координатах р, V изображается прямой, параллельной оси ординат (рис. 81), где процесс 1-2 есть изохорное нагревание, а 1 -3 - изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, Изотермический процесс (T =const). Как уже указывалось § 41, изотермический процесс описывается законом Бойля-Мариотта
, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Вопрос 34:

34 Адиабатическим называется процесс, при котором отсутствует теплообмен (dQ= 0)между системой и окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, адиабатическим процессом можно счи­тать процесс распространения звука в среде, так как скорость распространения звуко­вой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т. д.
Из первого начала термодинамики (dQ= dU+dA ) для адиабатического процесса следует, что
p /С V =γ , найдем

Проинтегрируя уравнение в пределах от p 1 до p 2 и соответственно от V 1 до V 2 , и потенцируя, придем к выражению

Так как состояния 1 и 2 выбраны произвольно, то можно записать

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Их взаимодействия.

Внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии. Рассмотрим взаимное превращение механической и внутренней энергий. Пусть на свинцовой плите лежит свинцовый шар . Поднимем его вверх и отпустим. Когда мы подняли шар, то сообщили ему потен-циальную энергию. При падении шара она уменьшается, т. к. шар опускается все ниже и ниже. Но с увеличением скорости постепенно увеличивается кинетическая энергия шара. Происходит превращение потенциальной энергии шара в кинетическую. Но вот шар ударился о свинцовую плиту и остановился. И кинетическая, и потенциальная энергии его относительно плиты стали равными нулю. Рассматривая шар и плиту после удара, мы увидим, что их состояние изменилось: шар немного сплющился, и на плите образовалась небольшая вмятина; измерив же их температу-ру , мы обнаружим, что они нагрелись.

Нагрев означает увеличение средней кинетической энергии молекул тела. При деформации из-меняется взаимное расположение частиц тела, поэтому изменяется и их потенциальная энергия.

Таким образом, можно утверждать, что в результате удара шара о плиту происходит превращение механической энергии, которой обладал в начале опыта шар, во внутреннюю энергию тела.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую.

Например, если взять толстостенный стеклянный сосуд и накачать в него воздух через отверстие в пробке, то спустя какое-то время пробка из сосуда вылетит. В этот момент в сосуде образуется туман. Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внут-ренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку (т. е. расширяясь), совершил работу за счет уменьшения своей внутренней энергии. Кинетическая энергия пробки увеличилась за счет внутренней энергии сжатого воздуха.

Таким образом, одним из способов изменения внутренней энергии тела является работа, совершаемая молекулами тела (или другими телами) над данным телом. Способом изменения внут-ренней энергии без совершения работы является теплопередача .

Внутренняя энергия идеального одноатомного газа.

Поскольку молекулы идеального газа не взаимодействуют друг с другом, их потенциальная энергия считается равной нулю. Внутренняя энергия идеального газа определяется только кинетической энергией беспорядочного поступательного движения его молекул. Для ее вычисления нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что k N A = R , получим значение внутренней энергии идеального газа :

.

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его температуре. Если воспользоваться уравнением Клапейрона-Менделеева , то выражение для внутренней энергии идеального газа можно представить в виде:

.

Следует отметить, что, согласно выражению для средней кинетической энергии одного атома и в силу хаотичности движения, на каждое из трех возможных направлений движения, или каждую степень свободы , по оси X , Y и Z приходится одинаковая энергия .

Число степеней свободы — это число возможных независимых направлений движения молекулы.

Газ, каждая молекула которого состоит из двух атомов, называется двухатомным. Каждый атом может двигаться по трем направлениям, поэтому общее число возможных направлений дви-жения — 6. За счет связи между молекулами число степеней свободы уменьшается на одну, по-этому число степеней свободы для двухатомной молекулы равно пяти .

Средняя кинетическая энергия двухатомной молекулы равна . Соответственно внутрен-няя энергия идеального двухатомного газа равна:

.

Формулы для внутренней энергии идеального газа можно обобщить:

.

где i — число степеней свободы молекул газа (i = 3 для одноатомного и i = 5 для двухатомного газа).

Для идеальных газов внутренняя энергия зависит только от одного макроскопического параметра — температуры и не зависит от объема, т. к. потенциальная энергия равна нулю (объем определяет среднее расстояние между молекулами).

Для реальных газов потенциальная энергия не равна нулю. Поэтому внутренняя энергия в тер-модинамике в общем случае однозначно определяется параметрами, характеризующими состоя-ние этих тел: объемом (V) и температурой (T) .

Похожие публикации